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This paper concerns the asymptotic behaviour (for the limiting case of small 
amplitudes) of small disturbances as they evolve in time to produce the quasi-steady 
pattern of roll waves first discussed by Dressler in 1949. Roll waves exist if F ,  the 
undisturbed Froude number (dimensionless speed) of the flow, exceeds 2, and consist 
of a periodic pattern of bores separating two special continuous solutions of the 
governing equations in a uniformly translating frame. The mathematical problem is 
rather interesting as solutions of the linearized equations are unstable for F > 2. 
Thus, it is crucial to account for the cumulative effect of small nonlinearities to 
obtain a correct description of the flow over long times. We concentrate on the 
weakly unstable problem (0 < F - 2 < 1 )  and use multiple scale expansions to derive 
the dominant evolution equation that governs the solution behaviour for long times. 
This turns out to be an integro-partial differential equation of first order that we 
solve numerically in conjunction with the jump condition that follows from the exact 
bore conditions. We present asymptotic and numerical results for periodic as well as 
isolated initial disturbances, and show that our theory predicts the solution 
accurately for both the transient and quasi-steady phases. 

1. Introduction 
We consider nonlinear waves on a thin fluid layer flowing down an inclined open 

channel. As the NavierStokes equations with the nonlinear free-surface boundary 
conditions are intractable even using numerical simulation, approximate solutions 
for the limiting cases of low and high Reynolds number are quite useful. At low 
Reynolds number, the local velocity profile can be approximated to leading order by 
the viscous Nusselt profile, leading to a single nonlinear partial differential equation 
for the normal interfacial height. This type of problem is studied by Nakaya (1975), 
Kawahara & Toh (1985) and Chang (1986). 

A t  high Reynolds number, a macroscopic averaging technique assuming a flat 
velocity profile and a hydrostatic pressure balance has been used by Dressler (1949), 
Whitham (1974) and Needham & Merkin (1984). Using dimensionless variables, the 
equations for mass and momentum conservation for shallow water in a broad, 
slightly inclined channel are given by (Kevorkian 1990, $5.1.1) 

ht+uh,+hu, = 0 ,  

h(ut + h, + UU,) = h - u2/F2.  

(1.la) 

(1.1 b )  

As shown in figure 1 ,  u is the flow speed parallel to the channel bottom averaged over 
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FIQURE 1. Flow geometry. 

h, and h is the height of the free-surface normal to the bottom. The first and second 
terms on the right-hand side of (1.1 b )  respectively represent the gravitational and 
friction forces on a column of water of width dx. The Froude number F is the 
dimensionless speed of undisturbed flow of unit height with viscous and gravitational 
forces in perfect balance. The choice of the horizontal and vertical lengthscales 
and timescale leading to the above dimensionless formulation implies that F = 
((tans)/C)i, where tans  is the channel slope and C is the friction coefficient. Thus 
F increases with increasing slope or decreasing friction, as expected. 

As was pointed out by Whitham (1974), the uniform flow is locally unstable when 
F is larger than 2 .  That is, for any small disturbance imposed on the uniform flow, 
the response predicted by linear theory for (1.1) has an amplitude that grows 
exponentially in time. However, solutions of the nonlinear equations (1.1) are 
stable. In fact, various levels of approximation of the flow equations may be used 
to exhibit bounded quasi-steady solutions ; these are time-independent periodic 
solutions in a coordinate frame moving downstream with a constant speed. In  
particular, the dimensional form of (1.1) was used in Dressler’s (1949) study. He 
showed that no continuous quasi-steady solutions exist, and that it is necessary to 
have F > 2 in order to find discontinuous quasi-steady periodic solutions that he 
called roll waves. In this case each cycle in the periodic pattern of roll waves consists 
of two special continuous solutions joined by a bore. A formulation, including an 
additional hu,, term in (1.1 b )  to account for energy dissipation, was analysed by 
Needham & Merkin (1984) to show that in this higher-order model periodic quasi- 
steady continuous waves exist when the uniform flow is locally unstable. These 
results were independently confirmed by Hwang & Chang (1987) using normal form 
techniques. 

In  this paper we present an analysis for the weakly nonlinear wave evolution using 
a multiple scale asymptotic expansion where the small parameter 8 measures the 
amplitude of the initial disturbance. In  particular, we consider the initial conditions 

h(x,O;E) = l+EhO(Z) ,  ( 1 . 2 ~ )  

u ( ~ , O ; E )  = P+SU,(Z), (1 .2b )  

for prescribed disturbance functions h,(z) and u0(x), and we discuss two specific 
examples corresponding to periodic or isolated disturbances. The time-dependent 
solution that we derive takes into account the cumulative effect of the small 
nonlinearities, and tends to Dressler’s roll-wave solution as t+ co for the case of 
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periodic disturbances. For an isolated initial disturbance, we find a limiting solution 
(as t + co) that is a special case of Dressler's quasi-steady solution in the form of a 
single roll wave. We also compare our results with numerical integrations of the exact 
problem (1.1)-(1.2) in each case, and show that the transient behaviour of the 
solution including the intensity and propagation of discontinuities is accurately 
described. We concentrate on weakly unstable flows by restricting the Froude 
number to the one-parameter family F = 2 + ae, where a is a positive O( 1 )  constant. 
The strongly unstable problem, where F - 2 = O( l ) ,  is not discussed because a 
multiple scale analysis gives a solution valid for times that are only marginally longer 
than O(1) .  The effect of the strong instability of initial disturbances is to produce a 
steady state that, although bounded, differs by O(1) from the underlying uniform 
flow ; thus, no perturbation scheme can be expected to describe such a solution over 
long times. 

The general multiple scale procedure that we use here is analogous to that 
discussed in Kevorkian & Yu (1989) ; one new ingredient is that in the present case 
the linearized solution is unstable as t + co. The example that we study is a special 
case of the mathematical problem defined by a system of two quasi-linear hyperbolic 
equations with linearly unstable solutions in a given parameter range. The essential 
new result that emerges from our analysis is that the evolution of the growing 
disturbance now obeys an integrwpartial differential equation that describes the 
steepening of the wave and eventual bore formation. As in earlier work, the basic 
conservation laws of the governing system imply appropriate jump conditions for 
such discontinuities in the evolution equations. 

2. The linearized solution; stability 
We begin our discussion by studying the behaviour of the linear problem 

governing perturbations to the uniform flow solution ( h  = 1 ,  u = P) of ( 1 . 1 ) .  The 
following pair of quasi-linear equations for the dependent variables vl, v2 : 

for a given matrix {Af5(vl, v2)} and column vector ft(vul, v2), is a general version of the 
system ( 1 . 1 ) .  Let the constant state v1 = via) = const. ; v2 = via) = const. be a solution 
of (2 .1) ,  i.e. fa = (wy),vio)) = 0 for i = 1,2,  and look for a solution that is close to this 
constant state. This would be the case, for example, if one wishes to solve the initial- 
value problem vi(x, 0 )  = via) + ebi(x) ; i = 1 ,2  with 0 < 8 4 1 and prescribed functions 
b,(x). This perturbation problem is a special case of the situation discussed in 
Kevorkian (1990, 54.5). It is easily seen that the linearized equations for the 
perturbation terms u&, t )  : 

vi(X,t;E) = vp+€Ut(x , t )+O(€2)  (2 .2)  

are 

where {A$')} and {B,} are the constant matrices 

( 2 . 3 ~ )  

(2.3b, c )  
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For the hyperbolic problem we have (A$-Ag))z+4J\$)Ag) > 0, and it follows that 
the eigenvalues A,, A, of {A$‘)} are real and distinct : 

A,, , = +{A $;) + A  g * [ ( A  \;) - A  g), + 4A 1 2  ( 0 )  A 21 ( O ) ] t }  (2.4) 

and we may transform (2.3a) to the characteristic form 

Here the U, are defined by the linear transformation 

i = 1,2 
2 

U( = c Kjuj; 
j=1 

in terms of the matrix 

and {C,} is the transformed matrix {Bij}:  

{C} = cw-l>{m{wJ. 
A solution of the linearized problem (2.3) or (2.5) is said to  be stable if an initial 

disturbance remains bounded in the far field (i.e. if t + co along either characteristic). 
As shown in Kevorkian (1990), the necessary conditions for stability are C,, > 0 and 
C,, > 0 if C,, $; 0, C,, =l 0 ; and C,, C,, > 0 if C,, = C,, = 0. 

For the case of the system ( l . l ) ,  we have v, = h ;  v8 = u ;  v\O) = 1 .  9 2  do) = F ,  and 
denoting u, and u2 in (2.3) by L(x, t )  and S(x ,  t ) ,  this linearized system becomes 

L,+Fh”,+.ii, = 0, (2.9a) 

.iit+Lx+F.iix-h”+2.ii/F’ = 0. (2.9b) 

The eigenvalues are A, = E’+ 1 ; A, = F - 1, and the characteristic form (2.5) has the 
matrix components C,, = C,, = 1/F-+; C,, = C,, = l/F++. For F > 0, the stability 
condition C,, > 0 always holds, and the condition C,, > 0 requires F < 2. 

Although one can solve (2.9) for arbitrary initial conditions in integral form in 
terms of the Bessel function Jo, the result is rather complicated; the qualitative 
behaviour of the solution as t --f co can only be discerned after further asymptotic 
analysis. However, it is possible to derive an explicit result for periodic initial 
conditions, and we begin with the choice - 

h(x, 0) = a, cos x + a, sin x, 
C(x, 0) = a3 cos x + a4 sin x. 

We assume a solution in the form 

L(x,t) = a,(t)cosu+a,(t)sinu, 

.ii(x,t) = a,(t)cosu+a,(t)sinu, 

(2.10a) 

(2.10b) 

(2.1 1 a) 

(2.11b) 

where u = x-Ft, and upon substituting (2.11) into (2.9) we obtain a fourth-order 
system for the ai(t) which can be solved, subject to ai(0) = a,, in the form 

(2.12) 
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where the matrix eMt is defined by 

e M t  = [ey+t (sin/3tSl+cos/3tR1)+er-t (sin/3tS2+cos,8tR2)], (2.13) 
2(P2 +PI 

and we have used the notation 

(2.14c, d )  y+ = ---+p, 1 y- = - - - p ,  1 
F 

(2.14e) 

and 
K = p2+p.  (2 .14i)  

We note that y- is negative for all F and y+ is positive or negative depending on 
whether F > 2 or P < 2 respectively. Thus, as expected, the initial disturbances 
decay exponentially if 0 < F < 2 whereas if F > 2 there is one exponentially growing 
disturbance. 

To fix ideas, let us simplify the foregoing result by choosing a, = a3 = a4 = 0 and 
a, = - 1 .  We then find the following expressions for h(x, t )  and C(x,  t )  : 

* ’ 
h(z ,  t )  = - { ey+t [ (p2 + P +$) sin <+ 

2(P2+P)  
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where [+ = ~ - ( F + p ) t  = C-Pt, [- = x - ( F - p ) t  = ~ + / 3 t .  (2.16a, b )  

Thus, the solution consists of two sinusoidal waves with time-dependent amplitudes 
travelling with speeds C+ = F + p  and C- = F-P. If 0 < F < 2, both waves decay 
exponentially as t + co . If, howevef, F > 2,  the wave with speed C+ has an amplitude 
which grows exponentially like eY t ,  while the C- wave still decays. 

Because of linearity, the above procedure generalizes to arbitrary periodic initial 
data after superposition of the results for each mode. The exponential growth 
predicted by the linear theory for F > 2 is not indicative of the actual solution as we 
have totally ignored the effect of small nonlinear terms. These terms eventually 
become important whenever the linear theory predicts growth. In  fact, the existence 
of a bounded quasi-steady solution of the nonlinear problem is well known, Dressler 
(1949), and we consider next how initially unstable disturbances evolve to form a 
quasi-steady roll wave pattern as t + co . 

3. Weakly unstable solutions (F - 2) < 1 
We restrict our attention to the weakly unstable problem 0 < F - 2 4 1 as in this 

case we can explicitly derive all the qualitative features of the more general case 
F > 2, including the steepening of waves, bore formation, and evolution of a quasi- 
steady pattern. 

We assume F = 2 + sa, where a is a positive O( 1)  constant and look for a multiple 
scale expansion of (1.1) in the form 

h(x, t ; €) = 1 + Bhl(x, t ,  t", + s2h,(x, t ,  t", + 0 ( € 3 ) ,  ( 3 . 1 ~ )  

u(x , t ; s )  = 2+E[01+U1(x,tr~)]+€2U2(x,t,t")+O(€3), (3.1 b) 

where t"= st is the slow time, and the form of (3.lb) implies that EU, is the 
perturbation to 2 +€a. 

Substituting (3.1) into ( l . la,  b) shows that h, and u1 must satisfy 

hlt + 2hlZ + ul, = 0, 

u,, + h,, + 2U12 - h, + u1 = 0, 
and h,, u2 must satisfy 

( 3 . 2 ~ )  

(3.2b) 

hZt + 2hZZ + u,, = - hl j -  (a + u,) hlZ - h, ul,, (3.3a) 

u2t+h,z+2u,Z-h2+u2 = -u1~-(a+u1)u1 ,+~au1-(h1-~ , )~ .  (3.3b) 

It is very helpful in the analysis to introduce the characteristic dependent and 
independent variables of the linearized problem : 

R, = hl-U1; S,  = hl+ul, 
7 = x-t. 6 = x-3t; 

(3.4a, b) 

(3 .44 e )  

Equations (3.2) then become 

Rl -'&R1=O; S,  '1 -18 1 -  - 0  (3.5a, b) 
E 

and can be solved sequentially. Integrating ( 3 . 5 ~ )  first we have 

R,(6,r, t", =f1(r, t", ef'z. ( 3 . 6 ~ )  

Substituting ( 3 . 6 ~ )  into (3.5b) and integrating gives 

Sl(t,v,f) = G(r,f)ef/2+gl(6,t"), (3.6b) 
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where G ( q ,  f) is defined by 
ac/aq = if,(q, f). (3.7) 

The solution to O(e)  involves the two arbitrary functionsf, and gl, and these must 
be determined next by requiring the O(E2)-terms in (3.3) to be consistent. 

We again introduce the characteristic dependent variables 

R, = hz-uz;  S ,  = hZ+UZ, (3.8a, b )  
and rewrite (3.3a, b )  as 

RZE-$4 = Wlj+9(4a+ 8, - 3R1) (RII +R1J + 9(Sl +Rl) (Slt+Slf) 
+&(S,-R,) -i[4(S1+3R1)]2, (3.9a) 

s -L& z - --is z ij --( 4a+381-Ri)  (Si,,+SiJ+B(Si+Ri) (Rit+RiJ 21 

+ ~ c z ( S , - R , ) - + [ ~ ( ~ ~ , + ~ R , ) ] ~ .  (3.9b) 

In order to obtain a consistency condition for the solution of ( 3 . 9 ~ )  we multiply both 
sides of this equation by the integrating factor e-tI2. We then substitute (3.6a, b)  into 
the resulting equation and (3.9b) to obtain 

a(R, e-cIz) 
= +(fit + af,, + &zfi + iaG) + DST + NST 1, (3.10~) 

= & , - ~ [ g , c + ( a + ~ l ) g , f + ~ ~ - ~ o r g l ] + N S T 2 .  (3.10b) 

Here NSTl only involves terms such as A,(!& f))B,(r], t', where A,(& t', has a zero 
average over E,  whereas NST2 represents terms of the formA,([, t',B,(q, t', withBz(q, i?) 
having a zero average over q. Also, DST = %e-t/z(glgl +erg,-@) and this term is 
a function of 6 and K As argued in Yu (1988) the terms in parentheses on right-hand 
side of ( 3 . 1 0 ~ )  will contribute terms proportional to E in the solution for R, upon 
integration. Such terms are inconsistent with a uniformly valid expansion over O(E-') 
intervals in z and t ,  and must therefore be eliminated by requiring 

fli+afll+~afl+~aG = 0. (3.11) 

Terms in DST will not contribute any inconsistent terms to R, after ( 3 . 1 0 ~ )  is 
integrated. However, we do keep track of these terms because they contribute 
functions which depend on E and fbut not r] in the term 3, that appears on the right- 
hand side of (3.10b). To avoid any inconsistency in the solution for 8, after (3.10b) 
is integrated, we must eliminate functions of the E and fvariables only in R, together 
with the bracketed terms on right-hand side of (3.10b). This requires 

glC+ ( a + ~ l ) g l E - f a g l - ~ a e ~ / a  gle-'~sds+Cl) = 0, (3.12) 

If the initial conditions uo(x)  and h,(z) in (1.2) are 21-periodic functions of z then 

(3.13a, b)  

a7 

c. 

(.r 
where C, is an integration constant. 

g1 will be periodic in 6, and it follows from (3.6a, b )  that if we define 

f,*(q, 0 =f,(?l, q e'112; Q*(% t', = G(q,t', e'112, 

then f: is periodic in r] .  Equation (3.11) now becomes 

(3.14) 
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where C, is a constant of integration and we have replaced G(r],t") by (3.7). We use 
the periodicity conditions to determine C, ,  C, and the lower limit of the integral term 
in (3.12) and (3.14) to obtain 

(3.15 b )  

These are the evolution equations for f;" and 9,. Since the contribution from f;" to h 
and u must be multiplied by e(<-V)/, = e-t, which decays exponentially in time, only 
the evolution equation (3.15b) is important for large t .  Equation (3.15b) is a quasi- 
linear integro-partial differential equation in 6 and ffor gl. Equivalently, multiplying 
(3.15b) by e-t/2 and taking the partial derivative of the resulting equation with 
respect to 6 gives a second-order partial differential equation for 9,.  Through (3.1), 
(3.4), (3.6) and (3.13), we find that initial conditions (1.2u, b )  imply that 

( 3 . 1 6 ~ )  

(3.16 b )  

where G*(r],t") is defined in (3.13b) and can be determined by ( 3 . 1 5 ~ ) .  In fact, by 
comparing (3.11) with ( 3 . 1 5 ~ )  we see that 

(3.17) 

Equations (3.15u, b )  subject to the initial conditions (3.16a, b)  determine f: and g1 
uniquely. Once the expressions for f,* and g, are derived, the solution for h and u to 
order E is then available through (3.13), (3.6), (3.4) and (3.1) as 

h(x,t;s) = 1 +~E(g1(5,t')+[G*(r],t")+f,*(r],t")]e(t-~)~2)+O(E2), ( 3 . 1 8 ~ )  

u(x, t ; E) = 2 + €{a + t[gl(c, t") + [G*(r], t") - f,*(q, t")] e(E-V)/,]} + O(e2). (3.18 b )  

In order to interpret this result let us consider first the terms multiplied by e(t-T)12 
in the expressions for h, and u,. Each of these terms has the form of a periodic 
function of q,  which is also slowly varying (a function of 0, multiplying e(t-?)/2 = ed. 
Therefore, these terms decay exponentially as t +  co along a ray r ]  = const. In fact, 
these terms become unimportant when t = O(1og (E-,)) which is small compared to 
the time t = O(e-l) over which the expansion (3.18) is valid. Along a ray 6 = const., 
i.e. if x-3t = const. as t +  00, the &,(& t") term appearing in u, and h, represents a 
slowly varying contribution which remains of O( 1 )  and obeys the evolution equation 
(3.15b). As we shall see for specific examples, solutions of this evolution equation 
exhibit the typical long-term effects of weak nonlinearities including the steepening 
of waves and the eventual formation of bores. In particular, the amplitude of this 
wave grows with time a t  the initial rate predicted by the linear theory. This growth 
persists until the amplitude approximately doubles in magnitude, at which point 
the nonlinear terms come into play keeping the magnitude of the amplitude 
approximately constant even for t = O ( E - ~ ) .  

An important feature of the solution is that for periodic initial values gl(& 0) with 
a given wavelength 21, the solution of (3.15b), g,(<,t'), evolves with t" but remains 
periodic in 6 with the same 21 wavelength for all t" > 0. To see this let us first consider 
the solution of (3.15b) a t  a neighbouring time t"= A < 1 by the method of 
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characteristics for given 21-periodic initial data gl( 6, 0). The periodicity condition 
gl(t0 + 21,O) = gl(Eo, 0)  immediately implies that the characteristics emerging from 
Eo+21 and 5, have the same slope d[/dt"= a+$l([o,O). It is easily verified that the 
periodicity condition also implies that the right-hand side of (3.15b) at  t"= 0 has the 
same value at the two points 5, + 21 and Eo. Thus, identical characteristic equations 
and initial values govern the evolution of g1 along the parallel characteristics 
emerging from E0+21 and Eo. It then follows that the 21-periodicity of gl(E,d) is 
preserved, and repeating this construction proves that gl( 5, fi  remains 21-periodic for 
all t"> 0. One can apply the basic idea of this proof for the exact problem (1.1) to 
argue that the initial wavelength is exactly conserved for finite-amplitude periodic 
disturbances. 

To illustrate the above ideas, we again assume that the initial conditions (1.2a, b )  
are in the simple form ( 1  = n) 

h(x,O;e) = 1-esinx; u(x,O;e) = F ,  (3.19a, b) 

so that ho(x) = -sinx and uo(x) = 0, and (3.16a, b) become 

fl(x,O) = -ee-2/2sinx; gl(x,O) = -sinx-G(x,0)eZ/2. (3.20a, b)  

In this case, (3.11) has a solution in the form 

fl(q, t") = -eaaGq/2 sin (7 +bat"), (3.21) 

where a and b are undetermined coefficients. From (3.7) we have 

G(q,  f) = eaaf-qI21 5 (  s in (7 + bat") + 2 cos (q  +bat")). (3.22) 

Substituting (3.21) and (3.22) into (3.11), collecting the coefficients in front of 
eaar-q/2 cos (7 + bat") and eaaeq/2 sin (7 + bat") we find that a = 6 and b = -A. Therefore 
(3.21) and (3.22) become 

fl(7, t") = -e 3ai/10-q/2 sin (7 - &at") , (3.23) 

G ( ~ ,  0 = e3af/l~-q/2 1 ,(sin (7 -&at") + 2 cos ( q  -&at")). (3.24) and 

When (3.24) is used, the initial condition (3.20b) becomes 

gl(x, 0 )  = - i( 6 sin x + 2 cos 2). (3.25) 

We now solve equation (3.15b) subject to the initial condition (3.25) by an explicit 
finite-difference method. A quadrature with repeated trapezoidal rule is used to 
evaluate the integral terms in (3.15b). The jump conditions across a discontinuity of 
the solution of (3.15b) can be obtained from the exact bore conditions for (1.1). 
Proceeding as in Yu (1988), we find that 

(3.26) 

where the plus and minus superscripts indicate values on either side of the 
discontinuity. Thus, the correct divergence form for (3.15b) is 

In order to verify the accuracy of the asymptotic results, we numerically integrate 
the exact problem (1.1). As discussed in Yu (1988), we rescale the characteristic 
variables and solve the resulting equations also by an explicit finite-difference 
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FIGURE 2. Numerical (-) and asymptotic ( .  . . . . .) solutions for the periodic initial conditions 
h ( z , O ; ~ )  = l--Esinz;u(z,O;e) =P: (a) F = 2.1, ( E  = 0.1, a = 1) at t = 10 = 1/e; ( b )  F = 2.05, 
( E  = 0.05, a = 1)  at t = 20 = l/s; (c) F = 2.02, ( E  = 0.02, a = 1) at t = 50 = l/s. 

method. In each of the algorithms used for solving (1.1) and (3.156) we rely on the 
so called ‘flux-splitting’ technique and the time steps are chosen to satisfy the CFL 
condition to ensure stability. In figure 2(a )  we show the theoretical (dotted curve) 
and numerical (solid curve) values of h in a 2x-interval in x for t = 10, E = 0.1 and 
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F = 2.1 .  A bore is about to form near x = 30.75. The maximum error everywhere 
away from this location is 0.5 x and is certainly of O(e2). Near the incipient bore 
location the maximum error is about 1.8 x which is between O(s)  and 0 ( e 2 )  and 
is entirely due to the error in the potential bore location. In order to ascertain that 
the theory is indeed accurate to O(E)  for times of O ( E - ~ )  we investigate the accuracy 
of our results for two smaller values of 8. Figure 2 ( b )  shows h for the case F = 2.05, 
E = 0.05 and t = 20. The maximum error away from the incipient bore location in this 
case is 2.4 x A comparison 
of these errors with the numerical values s = 5.0 x lop2 and s2 = 2.5 x shows that 
the accuracy obtained is consistent. Figure 2(c)  is for the case where F = 2.02, 
e = 0.02 and t = 50. The two maximum errors are now 3.0 x 
respectively. These are also consistent with our theory and one observes a steady 
decrease of the error as we decrease the value of s. A quasi-steady-state solution 
exists in all three cases and we will analyse this in the next section. 

and the maximum error near that area is 2.9 x 

and 1.0 x 

4. Quasi-steady-state solutions 
In preparation for verifying our asymptotic solution in the limit t +- a, we 

summarize Dressler’s (1949) results and append a discussion on how to connect his 
quasi-steady solutions to given initial conditions 

Dressler proved that no continuous, periodic quasi-steady solutions exist for the 
system ( 1 . 1 ) .  However, for any given wavelength and progressing speed c, there 
exists a unique discontinuous periodic quasi-steady solution. Each cycle of the 
resulting roll wave pattern consists of two ‘special ’ (cf. the discussion following (4.6)) 
continuous solutions joined by a bore as shown schematically in figure 3. Because 
Dressler was only interested in quasi-steady solutions, he did not address the 
question of how a given initial state evolves to the final quasi-steady state. For 
periodic initial conditions, for example, we have shown that the quasi-steady 
wavelength is exactly equal to the initial wavelength, but further detailed study is 
needed to relate c to the initial conditions. In particular, we derive next a constraint 
linking the average values of the initial and quasi-steady surface heights. This 
relation will uniquely define c once the form of the quasi-steady solution is known. 

We modify Dressler’s notation and use our dimensionless variables x and h such 
that the wavelength is 21 and the undisturbed height is 1 .  Since Dressler’s solution 
is steady in a uniformly moving frame of reference, we make the change of variables 
t* = t and 5 = x-ct, where c is the progressing speed. In  this moving frame the 
velocity u* and height h* are given by u* = u-c and h* = h. We use an overbar to 
denote the average of a variable over one wavelength of the quasi-steady solution, 
i.e. 

Averaging the law of mass conservation 

h,. + (u*h)c = 0, (4.2) 
and using the periodicity condition of u*h, we find that E,, = 0. When we use the 
initial condition ( 1 . 2 ~ )  we obtain the following physically obvious constraint for 

(4.3) 
This is an exact (rather than asymptotic) condition valid for arbitrary s. Note 

E(t*) : 
E(t*) = const. = 1 +EL,,. 
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FIGURE 3. Roll wave. 

incidentally that averaging the momentum conservation law does not provide an 
analogous constraint for a*(t*). We have 

(u*h),,+ (U*2h++h2)5 = h- (u*+c)'/F', (4.4) 
and using the periodicity condition of u*,h+;h2, we find that 

(u*h),* = 1 +€LO - (u* + c)2/F2. (4.5) 
Since the right-hand side of (4.5) is, in general, not zero, the average momentum is, 
in general, a function of time and this is due to the friction and gravitational forces. 

We next discuss how to use (4.3) to isolate the particular quasi-steady solution that 
is selected for a given initial wave. It is shown in Dressler (1949) that in each cycle 
of a roll wave there exists a point Q where the flow is critical, i.e. 

u,*~ = h C7 (4.6~) 

(uF +c)' = F'h,. (4.6b) 
Dressler denotes flows which satisfy the two conditions (4.6a, b )  as 'special' 
solutions. The two equations (4.6a, b) involve the three unknowns u,*, h, and c .  We 
shall use the constraint (4.3) to close the system. Since (4.3) involves the special 
solution h([), we need to first define this function in detail. 

The special solution defining the left continuous segment hL(c)  is given by the 

and that the following condition is necessary for a consistent solution : 

inverse of 
h-h, 

2 - ~ t r g = & ( h ) = h - l + + , l o g  (4.7) 

Here, the constants h,, hB are defined by 

(4.8a, b) 

and satisfy the inequalities 0 < h, < h, < h, for F > 2. The constants k, and k, are 

2F + 1 - (4F+ 1); 
hc 2F2 

h,; h, = 
w +  1 +(@+ 1)i 

2F2 
h, = 

given by 
h; + h, h,+ hf h i  + hB h, +hE k, = ; k, = 

hA -hB h, - hB 
(4.9a, b) 

We also note that the left end of the wave is chosen at y = -Z; thus &( 1) = - I  in (4.7), 
i.e. hL(-Z) = 1. The right continuous segment of the wave, hR((n, is defined by the 
inverse of [ = 2Z+&(h), hence i t  satisfies the periodicity condition h,(Z) = 1. 
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The two jump conditions across a bore are given by 

u*-h- = u*+h+ = ue* h,, ( 4 . 1 0 ~ )  

(4.10b) 

where the plus and minus superscripts indicate values on the right and left sides 
respectively of the bore. The first condition ( 4 . 1 0 ~ )  states that the progressive 
discharge rate is constant. In deriving the solution (4 .7)  we have used this condition 
to eliminate the dependent variable u*. Therefore, ( 4 . 1 0 ~ )  is always satisfied. We 
use the second condition (4.10b) to locate the bore as follows. At  the bore location 
5 = 6, we have = &(h-) = 21+&(h+), i.e. 

(4.11) 

The values of h- and h+ are defined by (4.10b) and (4.1 1 )  implicitly. Once these values 
are found, we use = &(h-) or Cs = 21+Q(h+) to calculate the bore location 6 and 
this defines h(lJ completely (see figure 3 ) .  

We are now ready to evaluate the three unknown constants u,*, h, and c that are 
associated with a given initial wave. From (4 .3)  we have 

hL([)d[ = 1 +€go. (4.12) 
1 5% - 
2 S L - 2 1  

Integrating by parts and substituting y = &(h) into the result gives 

Q(h)dh = l+sh0,  (4.13) 

where &(h) is defined by (4 .7) .  For a given initial wave go, (4.13) involves the 
unknown constant h, only and can be used to calculate h, uniquely. A numerical 
value for h, is easily computed; however, an explicit analytic expression is not 
possible. Once h, is available, u,* follows from ( 4 . 6 ~ )  and c from (4.6b). This 
completely defines one cycle of the roll wave which is the periodic extension of this 
cycle. This result is exact (valid for arbitrary 6 )  but not analytic. It is possible to 
compute an analytic expression for the roll wave and all the parameters that define 
it if we restrict 8 to be small and use our asymptotic results as discussed below. 

We begin with a derivation of the quasi-steady limit of the asymptotic solution 
correct to O ( E )  given by ( 3 . 1 8 ~ ,  b) .  As was pointed out earlier, the amplitude of the 
disturbance along the 7 = const. ray decays exponentially. Therefore, as t + 00 these 
terms vanish and (3.18a, b )  become 

h = l+&g*; u = 2+401+&*), (4.14a, b)  

where g* is the quasi-steady value of g , ,  and must be obtained from (3.15b) and (3.26). 
In order to compare with Dressler's solution, we expand the progressing speed c as 
c = 3 + $+ 0 ( c 2 )  and make the change of variables t"* = rand 5 = (-/%in (3.15 b )  and 
(3.26). At this stage /3 is an unknown O( 1 )  constant. It can be shown that the integral 
terms in (3.15b) are unchanged under this transformation. By letting f* --f 00 while 
holding 6 fixed, one obtains the following equation for g * ( c )  : 
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and the following jump condition: 
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a-/3+$(g*++g*-) = 0. (4.16) 

Taking the derivative of (4.15) with respect to g and eliminating the integral terms 
between the resulting equation and (4.15) shows that g* must satisfy 

d2(16(a-P) 9* + 69*2) d(3g*2+4(3a-2P) g*) 
(4.17) - - 

d S  dC 

Integrating once, we have 

(a -P+&*) d5 dg* = &[g*' +9(3a - 2P) 9* +K,], (4.18) 

where K ,  is a constant of integration and can be determined from the condition 
( 4 . 6 ~ ) .  We use (4.14a, b )  to expand ( 4 . 6 ~ )  and obtain 

9: = t ( P - 4 ,  (4.19) 

where g: is the value of g* at which the flow is critical. At the critical point the left- 
hand side of (4.18) vanishes. A consistency argument similar to that given by 
Dressler (1949) shows that the necessary condition for existence of the special 
solution is that the right-hand side also vanishes. This implies that 

and (4.181 reduces to 
K,  = $(/3-a) (/3--2a), 

The solution of this equation subject to g*( -1) = 0 is given by 

(4.20) 

(4.21) 

(4.22) 

and the right segment of the wave can be obtained from (4.22) with a 21-shift, i.e. 

y =  z+41ogl l +  

At a bore location 5, (4.22) and (4.23) imply 

(4.23) 

(4.24) 

Solving this equation together with (4.16) gives 

g*+ = a &3-2a/(1 +e-1/2)]; g*- = t[P-2a/(1 +ell2)]. (4.25a, b)  

ys = -4log[(2~%-/3)/a] COS~$].  (4 .25~)  

The solution defined by (4.22)-(4.25) contains the unknown constant /3 that we 
introduced in the expansion of c. We determine /3 through the expansion of the 
additional constraint (4.3) using (4.14a), i.e. 

Substituting ( 4 . 2 5 ~ )  into (4.23) we obtain the bore location as 

(4.26) 

Solving for g* from (4.22) and substituting the result into (4.26), one finds that 

/3 = &+2a[l-((2/1)tanh#Z]. (4.27) 
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FIQIJRE 4. Numerical (---) and asymptotic ( * * * a )  quasi-steady solutions for the periodic initial 
conditions with (a) F = 2.1, (6)  F = 2.06, (c) F = 2.02. 

The quasi-steady state of the asymptotic solution correct to O(E)  over a 21-interval 
is now available explicitly from (4.27), (4.22)-(4.25) and (4.14). 

We compare the exact and asymptotic quasi-steady solutions derived above in 
figure 4(a-c) for the three casesP = 2.1,2.05 and 2.02, respectively. The solid curves 
represent the exact solution and the dotted curves are the asymptotic solution 
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correct to O(e) .  The values of these two solutions are shown over a 271-interval in 6 
and found to agree extremely well. Furthermore, the bore location is also very well 
predicted. The maximum errors for these three cases are 2.3 x 6.3 x and 
1.0 x lop4, respectively. 

5. Arbitrary initial disturbance 
Solutions corresponding to arbitrary initial conditions may be derived as the 

limiting forms of our results in $9 3 and 4 for the case of infinite wavelength. In fact, 
with the exception of the evolution equations (3.15a, b) ,  which are now in the form 

JOO 

glf+(a+fgl)gl, = ~ a g , + & e ~ / 2  g1e-S/2ds, (5.lb) 

all the other formulae in $3 are unchanged. Actually, (5.1) is more general than (3.15) 
in the sense that if one assumes f: and g1 to be periodic functions of 7 and 
respectively, one recovers (3.15). We verify the accuracy of the asymptotic results for 
the isolated initial disturbance given by 

h ( x , O ; e )  = l--ee-"5*; u(s ,O;s)  = F .  (5.2a, b) 

As for the results in figure 2, we compare our asymptotic solution with the numerical 
integration of the exact problem ( 1 . 1 )  in figure 5 .  In  figure 5 ( a )  we show the 
theoretical (dotted curve) and numerical (solid curve) values of h over an interval of 
about 10 in x for t = 10, E = 0.1 and F = 2.1. Near the incipient bore location the 
maximum error is about 4.0 x lop2 which is between O ( E )  and 0 ( e 2 ) ,  and is entirely 
due to the error in the potential bore location. Everywhere away from this location, 
the maximum error is 0.3 x and is certainly of O(eZ) .  Figure 5(b) shows h for the 
case where F = 2.05, E = 0.05 and t = 20. The maximum error away from the 
incipient bore location in this case is 0.2 x lop2 and the maximum error near that area 
is 2.0 x A comparison of these errors with the numerical values E = 5.0 x loT2 
and e2 = 0.25 x shows that the accuracy obtained is consistent. Figure 5 (c) is for 
the case where F = 2.02, B = 0.02 and t = 50. The two maximum errors now 
5.0 x lop5 and 1.8 x respectively. These are also consistent with our theory and 
one observes a steady decrease of error as we decrease the value of E .  

Now, for the quasi-steady solutions corresponding to those in $4, it  is convenient 
to locate the bore a t  the origin. In this coordinate system, Dressler's special solution 
defining the left continuous segment hL([ )  is given by the inverse of 

la 

where the constants h,, h,, k, and k, are still defined by (4.8) and (4.9). Equations 
(4.10b) and (4.1 l) ,  which define the values of h- and h+ implicitly, are now in the form 

(5.4a, b) 

where the plus and minus superscripts indicate values on the right and left sides 
respectively of the bore. Equation (4.3) implies that we must integrate hL(c) over an 
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FIGURE 5. Numerical (-) and asymptotic ( .  . . . . .) solutions for the isolated initial conditions 
h ( z , O ; e ) =  l - e e - " z a ; u ( z , 0 ; e ) = F : ( a ) F = 2 . 1 , ( e = 0 . 1 , a =  l ) a t t = l O = l / e ; ( b ) F = 2 . 0 5 , ( E =  
0.05, a = 1) at t = 20 = 1 / ~ ;  (c) F = 2.02, (B = 0.02, a = 1) at t = 50 = 1/e. 
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FIQURE 6. Numerical (-) and asymptotic ( .  . . . .  .) quasi-steady solutions for the isolated initial 
conditions with (a) F = 2.1, (a) F = 2.05, (c) F = 2.02. 
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interval of infinite length. We, therefore, must require h + 1 as c+ - GO, that is h+ = 
h, = 1 .  From ( 4 . 8 ~ )  one finds that 

2F2 
h, = 

2F + 1 + (43' + 1)f ' (5.5) 

Once these values are found, the solution to the left of the bore is available from (5.3). 
The solution to the right of the bore is the undisturbed water h = 1. 

We derive next the quasi-steady limit of the asymptotic solution correct to O(s)  
given by (3.13a, b )  for the non-periodic case. From (4.21) we have 

g* = CeU4+9(p--2a), (5.6) 
where C is the constant of integration. With the bore located at the origin, the 
additional constraint (4.26) now becomes 

l i m L r  g*dg = 0. 
l+m 21 -21 

(5.7) 

This requires that the constant term in (5.6) vanishes, i.e. p = 2a and 

g* = Ce514. (5.8) 

To determine the constant of integration C, we consider the jump condition (4.16). 
Since we have g* + O  as [+- GO, then g*+ = 0, and from (4.16) g*- = #a. Evaluating 
g* a t  the origin where 6 = 0 from (5.8) one finds that C = #a. Therefore, to the left 
of the bore 

and to the right of the bore, we have undisturbed water, i.e. g* = 0. 
We compare the exact and asymptotic quasi-steady-state solutions derived above 

in figure 6(a-c) for the three cases F = 2.1, 2.05 and 2.02, respectively. The solid 
curves represent the exact solution and the dotted curves are the asymptotic solution 
correct to O(E). The values of these two solutions are shown over an interval in g of 
about 11 in length and found to agree extremely well. The maximum errors for these 
three cases are 4.0 x 1.0 x and 1.7 x respectively. 

6. Concluding remarks 
We have derived an asymptotic solution of the model equations (1 .1)  for arbitrary 

initial conditions (1.2) with s small. This solution to O(s) has the form (3.18) in which 
the functions f: and g1 obey the decoupled integro-partial differential evolution 
equations (3.15) for periodic initial disturbances (or the more general system (5.1) for 
arbitrary initial conditions). 

We have verified that our results remain accurate, as required by a multiple scale 
analysis, over the time interval [0, T(e) ] ,  where T = O(s-l). It turns out that for 
t < T the solution is time-dependent; a time on the order of 10T is required before 
the solution tends to a quasi-steady state. 

Dressler pointed out that the quasi-steady-state solution is uniquely determined 
by its wavelength and the progressing speed. We show in addition that a given 
arbitrary periodic initial disturbance tends to the roll wave having the same 
wavelength, and that the progressing speed of this roll wave is uniquely defined by 
the average value only of the initial wave, independently of its actual shape. In the 
limit t + GO our asymptotic solution confirms these results, and provides explicit 
formulae for the quasi-steady solution. 
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The remarkable accuracy of our asymptotic results for t + 00 is in part due to the 
fact that we compare only the limiting forms of both the asymptotic and exact 
equations. Also, we consider one cycle only of the roll wave, and we impose identical 
periodic boundary conditions on both solutions. A more stringent comparison would 
involve the ‘exact ’ and asymptotic solution computed for the same initial state over 
a time interval that is sufficiently long to ensure a well-developed quasi-steady state. 
Such a calculation is impractical for the weakly unstable problem as it requires 
integrations over times equal to about 1 W ’ .  At any rate, our results indicate that 
as t + 00, the asymptotic solution will, at  worst, have an O(s) phase shift relative to 
the ‘exact’ roll wave pattern; the actual roll wave profile is predicted very 
accurately. 

Finally, we point out that inclusion of a term hu,, multipIied by a small parameter 
in (1.1 b) will have a significant effect only in a thin layer centred at a bore, and will 
smooth this discontinuity exactly as does the second derivative term in Burgers’ 
equation (e.g. see Whitham 1974, Ch. 4 or Kevorkian 1990,§5.3.6). Since such a term 
is small, our perturbation analysis still holds, and we encounter second-derivative 
terms in the evolution equations (3.15). The numerical integration of these more 
general equations is not significantly altered. 

This work was supported by Grant No. DMS 8904845 from the National Science 
Foundation. 
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